ALGEBRA UNIT 11-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION (DAY 1)

- The Quadratic Equation is written as: ______; this equation has a degree of _____.
 - Where **a**, **b** and **c** are integer coefficients (where $a \neq 0$)
- The graph of this equation is called a _____; it is _____.
- Parabolas are functions because they ______

2 TYPES OF PARABOLA SHAPES

When "a" is **positive**, the parabola opens: _____

Where the curve reaches a _____

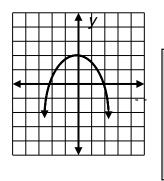
When "a" is negative, the parabola opens: _____

Where the curve reaches a _____

Draw in the line of symmetry of the parabola on the grid below, left.

This line of symmetry is called the _____

• It is always a vertical line that goes through the turning point of the curve.


Formula:

Axis of Symmetry:

<u>Examples:</u>

- 1. What is an equation of the axis of symmetry of the parabola represented by $y = -x^2 + 6x 4$?
- 2. What is the equation for the axis of symmetry for : $y = -x^2 2x 1$ (1) x = 1 (2) x = -1 (3) y = 1 (4) y = -1

Turning Point: Is another term for the **vertex** of the parabola. The "vertex" has the coordinates of (x, y).

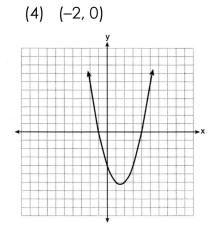
To Find Turning Point (T.P.)

Zeros (roots) of the equation are the points where the parabola

the

x – axis, so y = _____.

How to use the zeros to write a QUADRATIC equation:


Write a quadratic equation that has zeros that are -5 and 8.

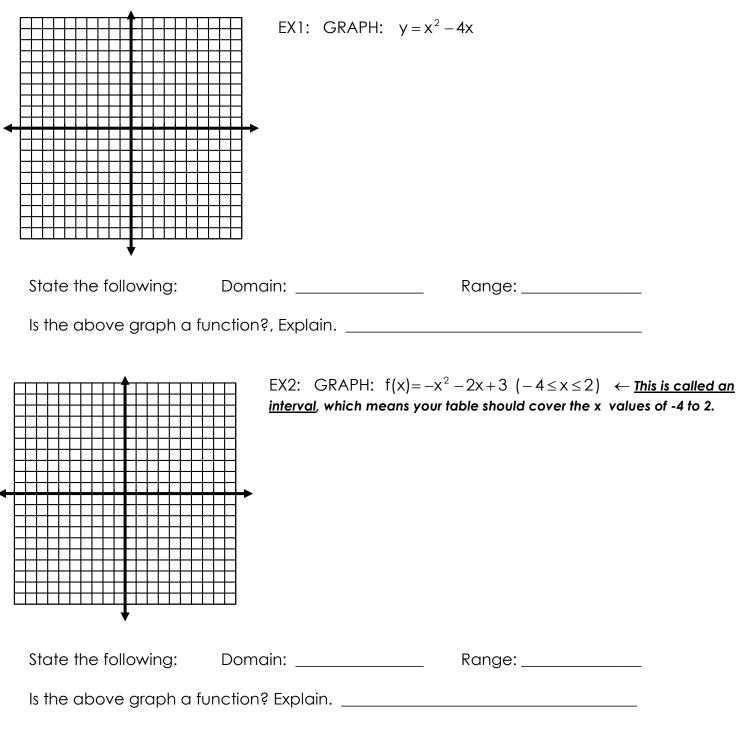
Examples:

1. What are the coordinates of the turning point of the parabola whose equation is $y = x^2 - 4x + 4$?

(1) (2, 0) (2) (-2, 16) (3) (2, -4)

2. What are the zeros of the parabola on the grid? Write an equation for this graph.

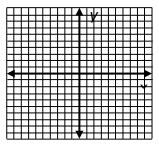
3. If the roots of a quadratic equation are -2 and 3, the equation can be written as:


1) (x - 2)(x + 3) = 03) (x + 2)(x + 3) = 02) (x + 2)(x - 3) = 04) (x - 2)(x - 3) = 0

GRAPHING QUADRATIC FUNCTIONS (DAY 2)

How to Graph Parabolas:

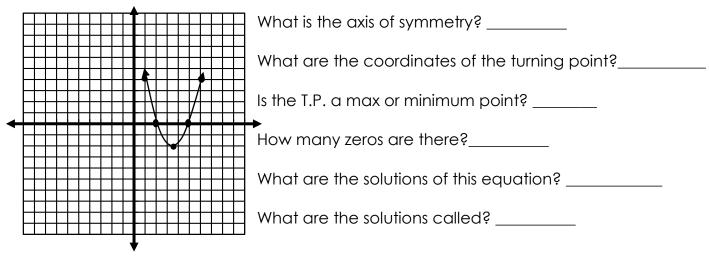
- 1. Find the **axis of symmetry** by using the formula.
- 2. Substitute the x-value back into the equation to find the **turning point and** describe it as a <u>max</u> or <u>min</u> pt.
- 3. Make a **table** of values.
- 4. Graph the points.


EAFLOKING THE GRAFHED QUADRATIC EQUATION (DAT 3)

Quadratic functions are written in the form:

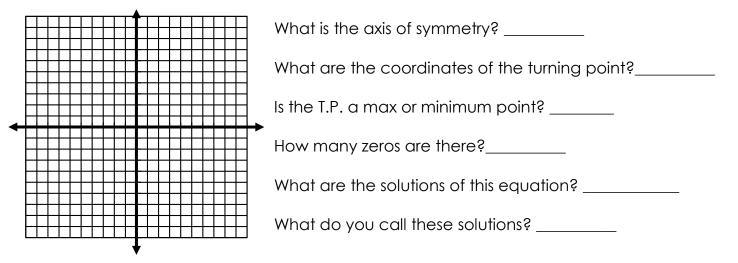
The **x** – intercepts (when **y** = 0) of the parabola $y = ax^2 + bx + c$ are called the ______ or ______ of the equation $(ax^2 + bx + c = 0)$

How many roots are possible to obtain from a quadratic equation?

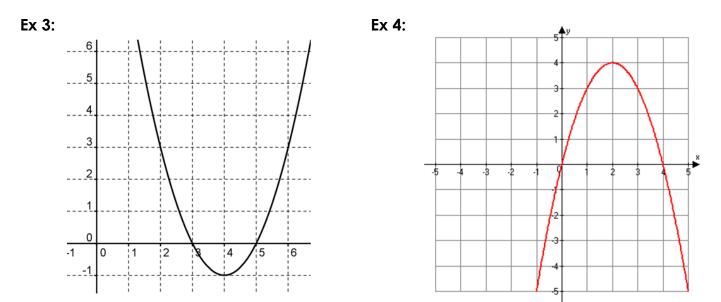

Draw a picture to illustrate each situation

											1	1							ſ
																			Γ
																			Г
																			Γ
																			Γ
																			Г
																			Γ
	_																		
1																			ľ
																		,	L
																			r
																			Г
																			Γ
																			Г
																			Г
																			Г
																			Г
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-

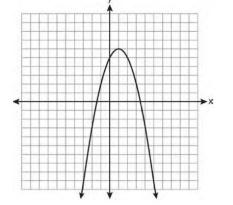
							١.	1				
-	_											-
	_											١.
											,	
						/						


EX1. Given the following graph of the equation $y = x^2 - 7x + 10$. Answer the following questions.

Now, solve the equation algebraically: $0 = x^2 - 7x + 10$

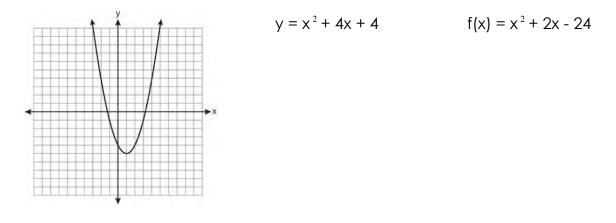

What do you notice?

Procedure for writing an equation for a graphed quadratic function


Given the two graphs below, write an equation for each.

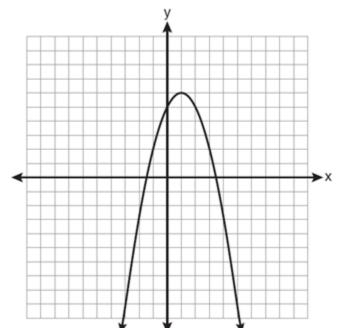
GRAPHING/EXPLORING QUADRATIC EQUATIONS CONT... (DAY 4)

Ex1: Graph: $f(x) = 3x^2 + 6x - 4$	•••••
Axis of symmetry:	
Vertex:	
Domain	<pre></pre>
Range	
Find f(1)	
-ind f(-2)	
Ex2: Graph: $f(x) = -2x^2 - 8x - 2$	
Axis of symmetry: Vertex:	
Domain	
Range	
Domain Range What is the y-intercept Find f(0)	


Ex3: Given the following two functions, which one has the larger maximum?

$$f(x) = -2x^2 - 8x + 3$$

Ex4: Given the following three functions, which one has the least minimum?


Ex5: The equation of the axis of symmetry of the graph of $y = 2x^2 - 3x + 7$ is

(1) $x = \frac{3}{4}$ (2) $y = \frac{3}{4}$ (3) $x = \frac{3}{2}$ (4) $y = \frac{3}{2}$

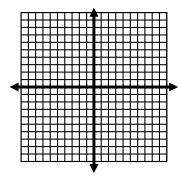
Ex6: The roots of the equation $3x^2 - 27x = 0$ are

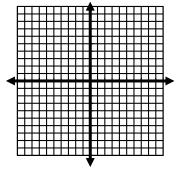
- (1) 0 and 9 (3) 0 and -9
- (2) 0 and 3 (4) 0 and -3

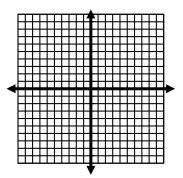
Ex7: What are the vertex and axis of symmetry of the parabola shown in the graph below?

- (1) Vertex (1, 6); axis of symmetry: y = 1
- (2) Vertex (1, 6); axis of symmetry: x = 1
- (3) Vertex (6, 1); axis of symmetry: y = 1
- (4) Vertex (6, 1); axis of symmetry: x = 1

SOLVING QUADRATIC - LINEAR SYSTEMS (DAY 5)

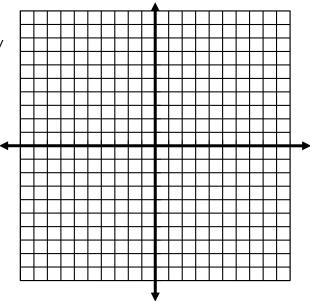

Two equations will be given to you with the directions to solve the system graphically.


- One equation will be a quadratic. This equation has degree ______
- The second equation will be linear. This equation has degree


You will have to create a table of values for the quadratic equation and graph the linear equation using _____.

Where the two graphs _____, this is your _____.

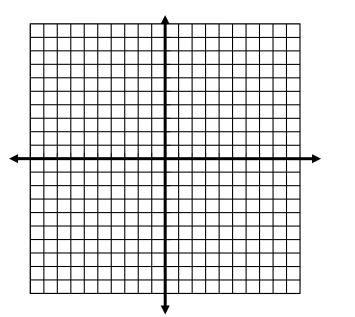
There are three possible situations as answers illustrated below. Indicate the number of solutions in each representation.



Examples:

Solve the following system of equations graphically 1. $y = -x^2 + 4x - 3$

$$x + y = 1$$



То с	heck on your graphing calculator (find intersection):
1)	Go to 2nd Trace (Calculate) and pick #5 (intersection)
2)	Move cursor to wanted intersection point and hit Enter Enter Enter

 $y = x^2 + 4x + 4$ y = -2x + 4

2. Solve the following system of equations graphically and check.

- 3. The graphs of the equations $y = x^2$ and x = 2 intersect in:
 - (1) 1 point (2) 2 points (3) 3 points (4) 4 points
- 4. Which is a solution or the following system of equations? y = 2x - 15 $y = x^2 - 6x$
 - (1) (3, -9) (2) (0, 0) (3) (5, 5) (4) (6, 0)
- 5. When the graphs of the equations $y = x^2 5x + 6$ and x + y = 6 are drawn on the same set of axes, at which point do the graphs intersect?
 - (1) (4, 2) (2) (5, 1) (3) (3, 3) (4) (2, 4)

Image: Solving Quadratic – Linear Systems Algebraically (Day 6)

PROCEDURE FOR SOLVING QUAD-LINEAR SYSTEMS ALGEBRAICALLY:

- 1. Make sure both equation are in y = form if necessary
- 2. Substitute the linear equation into the 'y part' of the quadratic equation, to have only one variable left to solve in the equation.
- 3. Get NEW quadratic equation into standard form (_____) and

4. Since it is a quadratic: Must FACTOR TO SOLVE FOR X.

(How many answers should you get?_____)

- 5. Must find other variable (y) by substituting your 'x' answers into one of the equation and solve for y.
- 6. Check solutions

Examples:

1. Solve the following system: $y = x^2 - x + 2$ y = 2x

2. Find the solutions of: $y = -x^2 + 4x - 3$ x + y = 1

3. Solve for the solutions:

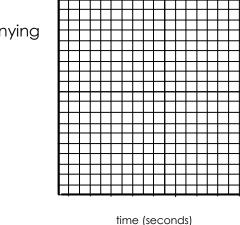
 $y = x^2 - 7x + 13$ x - y = 2

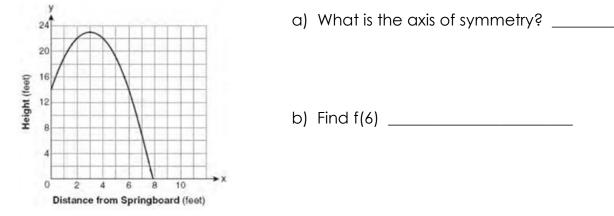
APPLICATIONS WITH PARABOLIC FUNCTIONS (DAY 7) EX. 1 Using the graph at the right, It shows the height h h (height (feet)) in feet of a small rocket **t seconds** after it is launched. The path of the rocket is given by the equation: $h = -16t^2 + 128t$. 250 How long is the rocket in the air? 200 2. What is the greatest height the rocket reaches? 150 3. About how high is the rocket after 1 second? _ 100 4. After 2 seconds, about how high is the rocket?_____ is the rocket going up or going down? 50 5. After 6 seconds, about how high is the rocket? _____ 2 5 6 8 1 3 4

6. Do you think the rocket is traveling faster from 0 to 1 second or from 3 to 4 seconds? Explain your answer.

time (seconds)

- 7. Using the equation, find the **exact** value of the height of the rocket at 2 seconds.
- 8. What is the domain of the graph?
- 9. What is the range of the graph?
- 10. Express the interval over which the graph is increasing.


is the rocket going up or going down? _____


11. Express the interval over which the graph is decreasing.

height (meters) A ball is thrown in the air. The path of the ball is EX2: represented by the equation $h = -t^2 + 8t$. Graph the equation over the interval $0 \le t \le 8$ on the accompanying arid.

- a) What is the maximum height of the ball?
- b) What is the amount of time that the ball is above 7 meters?
- **EX3:** A swim team member performs a dive from a 14-foot high springboard. The parabola below shows the path of her dive.

- **EX4:** Consider the graph of the equation $y = ax^2 + bx + c$, when $a \neq 0$. If a is multiplied by 3, what is true of the graph of the resulting parabola?
 - 1) The vertex is 3 units above the vertex of the original parabola.
 - 2) The new parabola is 3 units to the right of the original parabola
 - 3) The new parabola is wider than the original parabola.
 - 4) The new parabola is narrower than the original parabola.
- **EX5:** Melissa araphed the equation $y = x^2$ and Dave araphed the equation $y = -3x^2$ on the same coordinate grid. What is the relationship between the graphs that Melissa and Dave drew?
- **EX6**: The graph of a parabola is represented by the equation $y = ax^2$ where a is a positive integer. What happens to the new parabola if a is multiplied by 2? What if multiplied by $\frac{1}{2}$?

QUADRATIC APPLICATION WORD PROBLEMS (SOLVING ALGEBRAICALLY) (DAY 8)

Warm-Up: If 5 is a root of $x^2 - 3x + k = 0$, find k.

What is the other root?

Procedure for Word Problems

- Highlight given functions in the word problems
- Identify variables in the problem/function and highlight what they represent
- READ question carefully to determine WHAT variable needs to be solved for
- 1. After t seconds, a ball tossed in the air from the ground level reaches a height of h feet given by the function $h(t) = 144t 16t^2$.
 - a. What is the height of the ball after 3 seconds?

b. What is the maximum height the ball will reach?

c. After how many seconds will the ball hit the ground before rebound?

- 2. A rocket carrying fireworks is launched from a hill 80 feet above a lake. The rocket will fall into the lake after exploding at its maximum height. The rocket's height above the surface of the lake is given by the function $h(t) = -16t^2 + 64t + 80$.
 - a. What is the height of the rocket after 1.5 seconds?
 - b. What is the maximum height reached by the rocket?
 - c. After how many seconds after it is launched will the rocket hit the lake?

3. A rock is thrown from the top of a tall building. The distance, in feet, between the rock and the ground t seconds after it is thrown is given by $d(t) = -16t^2 - 4t + 382$. How long after the rock is thrown is it 370 feet from the ground?